Occurrence and Distribution of Microplastics in the Mudflat Sediments of the Medina Estuary, Isle of Wight

Presented by: Liberty Turrell

November 20th, 2024

The Global Plastic Problem

Washing clothes

Abrasion of vehicle tyres

Road markings

City dust

Marine protective coatings

Sources of Microplastics (Boucher and Friot, 2017)

Source: Horton and Dixon (2017)

Sewer Overflows as a Source of Microplastics

"Combined sewer overflows are a necessary part of the existing sewerage system, developed as overflow valves to reduce the risk of sewage backing up during heavy rainfall" (Environment Agency, 2024).

There were **464,056** monitored 'spill' events into waterways by water companies in England during 2023, which is a **54%** increase from 2022 (Environment Agency, 2024).

Consequences of Microplastic Pollution

Potential health effects:

- Impacting reproductive capability (Li et al., 2021)
- Induced oxidative stress causing cell damage (Barboza et al., 2019)
- Reduced feeding activity affecting growth (Wright et al., 2013)

Home > Animal Facts > Marine Animals > Scientists Just Collected 11 Petri Dishes Of Dolphin Breath - And F

Scientists just collected 11 petri dishes of dolphin breath – and found something very worrying

The exhaled air – collected from wild bottlenose dolphins in Florida and Louisiana – contained harmful microplastics, say the researchers.

Microplastics found in human breast milk for the first time

Exclusive: Researchers concerned over potential health impacts of chemical contaminants on babies

Article Open access Published: 31 January 2019

Microplastics in marine mammals stranded around the British coast: ubiquitous but transitory?

S. E. Nelms ^[2], J. Barnett, A. Brownlow, N. J. Davison, R. Deaville, T. S. Galloway, P. K. Lindeque, D. Santillo & <u>B. J. Godley</u> ^[2]

Scientific Reports 9, Article number: 1075 (2019) Cite this article

38k Accesses | 260 Citations | 1254 Altmetric | Metrics

The Medina Estuary

River Medina Catchment (Source: Digimap, 2023; Environment Agency, 2023)

Water quality of the Medina Estuary

Source: The Author

	Dodnor Lane Pumping Station CSO & EO			Fairlee CSO		
	2021	2022	2023	2021	2022	2023
Total duration	483.06	535.22	998.59	957.81	757.32	1,933.72
(hrs) all spills						
Counted spills	77	75	108	73	63	117

Source: Environment Agency (2024)

In 2022, the overall ecological status of the Medina catchment was assessed as 'moderate' by the Environment Agency, which ranks mid in the 5 possible classes (Environment Agency, 2023)

Methods

Field Sampling Strategy

- 16 sites
- 500m intervals (systematic)
- Eastern and western mudflats
- Increased sampling upstream and downstream of CSOs
- Samples taken from high tide mark
- Representative sample captured
- Top 2cm of sediment was sampled

Methods

Lab analysis procedure

- 1.Removal of organic matter
- 2.Wet sieving
- 3. Density separation
- 4.Filtration
- 5. Microplastic extraction and identification
- 6.Hot needle test
- 7. Microplastic quantification

Results: Occurrence and Distribution

- Microplastic concentrations range from 277 items kg-1 d.w. sediment at site E6 to ~132,000 items kg-1 sediment at site W7
- Average value of **2,147 items** kg-1 d.w. sediment
- Sites W7 and W9 are the most contaminated, >20 items per gram of mudflat sediment.

Results: Microplastic Assemblage

Microplastic assemblage at site W7

- a) The immense quantity of microfibres estimated at ~130,000 items kg-1 d.w. mudflat sediment.
- **b)** Microfragments and microbead.

Discussion: Microplastic Pollution of Estuarine Sediments

		Microplastics	Dominant	
Estuary	Location	kg⁻¹ d.w.	microplastic	Citation
		sediment	shape	
Kayamkulam	India	433	Fibre	(Radhakrishna
Estuary				n et al., 2021)
Fuhe River	China	558 ± 233	Fragment, fibre	(Zhou et al.,
Estuary				2021)
Changjiang	China	121±9	Fibre	(Peng et al.,
Estuary				2017)
Haihe Estuary	China	216 ± 92	Fibre	(Wu et al.,
				2019)
Pearl River	China	851 ± 177	Fibre	(Zuo et al.,
Estuary				2020)
Carrick Roads	Falmouth, UK	827 ± 162	Fragment, fibre	(Nel et al.,
Estuary				2020)
Ebro Estuary	Spain	2,052 ± 746	Fibre	(Simon-
				Sánchez et al.,
				2019)
Guanabara Bay	Brazil	528 ±30	Fibre	(Alves and
Estuary				Figueiredo,
				2019)
Tampa Bay	USA	280 ±290	Fibre	(McEachern et
Estuary				al., 2019)
17 estuaries in	Iran	351 ± 233	Fibre	(Ghavebzadeh
Caspian Sea				et al., 2021)
Jagir Estuary	Indonesia	217	Fibre	(Firdaus et al.,
				2020)
Medina	Isle of Wight,	2,147	Fibre	Present study
Estuary	UK			

Discussion: Wastewater as a Source of Microplastics

Conclusions

- Estuaries have been largely overlooked in research concerning the fate of microplastics in the aquatic environment.
- The prevalence and abundance of microplastics found in the intertidal mudflat sediments has highlighted a severe contamination issue of the Medina Estuary
- Primary microplastics, especially microfibres, dominate the microplastic assemblage which is indicative of the wastewater system as responsible for the release of these pollutants
- Whilst the spatial pattern of microplastic concentrations observed is partly influenced by the CSOs, these particles exhibit great distributional heterogeneity throughout the estuary
- Intertidal mudflats serve as temporary sinks for microplastics prior to their expulsion from the estuary.

libertyturrell@gmail.com| linkedin.com/in/libertyturrell